A Guide to Snubber Capacitor Selection for SiC-Based Switching Converters

Posted by Jordan Yates on May 11, 2022 9:00:00 AM

Today, most converter circuits now include semiconductors and switches made of silicon carbide (SiC) instead of plain old silicon (Si). This is because when silicon and carbon are combined, the resulting material, SiC, has excellent mechanical, chemical, and thermal properties. Therefore, SiC-based converters can handle voltages up to 10 times greater than converters using just Si while also offering lower losses. These characteristics make these converters an excellent option for applications such as power electronics, industrial devices, and electric vehicle (EV) charging stations. In this first post, we dive into the advantages of using snubber circuits to protect SiC-based converters and discuss how to further increase these efficiencies by focusing on capacitor selection.

Read More

Are You at Risk of Violating International Dual-Use Export Laws?

Posted by Steve Hopwood on May 4, 2022 7:00:00 AM

Today, many electrical systems are demanding higher operating voltages and temperatures, along with higher capacitance values – particularly in the fast-growing area of power electronics for electric vehicles (EVs). Therefore, electrical design engineers are looking to use multilayer ceramic capacitors (MLCCs) in these applications due to their inherent low inductance and wide operating temperature range.

Read More

Topics: Capacitor, Electric Vehicles

Filter Basics Part 4: Key Filter Types and Technologies

Posted by Peter Matthews on Apr 27, 2022 9:00:00 AM

To help customers with filter selection, we generally provide a lot of information on what our filters can do. But in this new Filter Basics Series, we are taking a step back to cover some background information on how filters do what they do. Regardless of the technology behind the filter, there are several key concepts that all filters share that we will dive into throughout this series. By providing this detailed fundamental filter information, we hope to help you simplify your future filtering decisions.

In part 4 of this series, we provide overviews of the main filter types and key filter technologies available today.

Read More

Topics: RF and Microwave, Filtering

PCB Design Considerations for High-Performance Filtering in mmWave Applications

Posted by Peter Matthews on Apr 20, 2022 9:00:00 AM

RF circuits for applications in the mmWave range (30 to 300 GHz) require high-performance filtering to meet the high-data, high-speed functionality that operating at these higher frequencies promises. However, filters for devices operating in the mmWave range will not function optimally if your printed circuit board (PCB) is not configured appropriately. For this reason, RF design engineers need to make a number of critical PCB design decisions that range from selecting the right materials to developing a board configuration that will limit common issues such as spurious-wave-mode propagation, conductor and radiation losses, unwanted resonance, and dispersion.

Read More

Topics: 5G, RF and Microwave, Filtering

Get to Know Knowles Precision Devices a Little Better

Posted by Dan Gaffney on Apr 13, 2022 9:00:00 AM

If you’re a long-time reader of our blog, you know that we typically dedicate our blog content to sharing our engineering team’s in-depth expertise and insights on the trends and technologies impacting the industries and applications we serve. We tend to be so focused on the exciting things we are working on to drive innovation in capacitor and RF filtering applications that we don’t share much about how we got to where we are now. But, as you can imagine, getting to the point we are at now with our world-class engineering and manufacturing teams, did not happen by accident.

Read More

Topics: News and Events

Filter Basics Part 3: Five Key Filter Specifications to Understand

Posted by Peter Matthews on Apr 6, 2022 9:00:00 AM

To help customers with filter selection, we generally provide a lot of information on what our filters can do. But in this new Filter Basics Series, we are taking a step back to cover some background information on how filters do what they do. Regardless of the technology behind the filter, there are several key concepts that all filters share that we will dive into throughout this series. By providing this detailed fundamental filter information, we hope to help you simplify your future filtering decisions. 

In part 3 of this series, we aim to help simplify filter selection by providing an overview and reference point for five of the most commonly discussed filter technology specifications.

Read More

Topics: RF and Microwave

Impedance: Examining the Opposition

Posted by Victor Lu on Mar 30, 2022 9:00:00 AM

Impedance, measured in ohms, extends the concept of “opposition” to alternating current (AC) applications. It accounts for resistance, the opposition of current flow, and reactance, the measure of opposing alternating current – an effect of inductance and/or capacitance. In direct current (DC) applications, we talk in terms of resistance, not reactance. Chances are: This isn’t new information. But there’s a reason we wanted to cover this topic – impedance values play an important role in capacitor selection.

Read More

Topics: Capacitor

Capacitors in Space: Specifications for High-Reliability

Posted by Victor Lu on Mar 23, 2022 9:00:00 AM

Space missions present a unique set of environmental challenges that demand high reliability down to the smallest electronic components. Mission failures could cost human lives. From in-flight systems to power supplies, every single system contributes to the success of a space project, so they must maintain high quality and safety standards for long durations.

Read More

Topics: Capacitor, Military and Aerospace, High Reliability

Filter Basics Part 2: Designing Basic Filter Circuits

Posted by Peter Matthews on Mar 16, 2022 9:00:00 AM

To help customers with filter selection, we generally provide a lot of information on what our filters can do. But in this new Filter Basics Series, we are taking a step back to cover some background information on how filters do what they do. Regardless of the technology behind the filter, there are several key concepts that all filters share that we will dive into throughout this series. By providing this detailed fundamental filter information, we hope to help you simplify your future filtering decisions.

Read More

Looking Closer at Smoothing Capacitors in Electric Vehicles

Posted by Simon Mao on Mar 9, 2022 8:30:00 AM

In power electronics, rectification is the conversion of alternating current (AC) to direct current (DC). After the AC signal enters a rectifier circuit consisting of power diodes, the resulting raw rectified waveform yields a series of half sine waves with significant ripple. In order to minimize the pulsating DC voltage, a smoothing capacitor is placed in parallel with the load across the rectifier output. As the rectifier voltage rises, the capacitor charges and stores energy like a reservoir. Then when the rectifier voltage falls, the capacitor discharges, greatly reducing the ripple voltage.

Read More

Topics: Capacitor, Automotive, Electric Vehicles

Insights Into Precision Passive Devices

Knowles Precision Devices is a premier global source for Capacitors, RF Filters, EMI Filters, Resonators, non-magnetic components and advanced dielectric materials. An umbrella for the brands of Compex, DLI, Johanson MFG, Novacap, Syfer and Voltronics, Knowles Precision Devices serves a variety of markets including military, aerospace/avionics, medical equipment, implantable devices, EMI and connector filtering, oil exploration, instrumentation, industrial electronics, automotive, telecoms and data networks.

This Blog will provide insights into:

  • Filters for 5G and mmWave
  • Capacitors for High Voltage
  • Capacitors for High Reliability

and much more. Subscribe below to stay informed.

Subscribe Here!

Recent Posts