The Capabilities, Benefits, and Key Applications for StackiCap

Posted by Nan Zhang on May 24, 2023 8:30:00 AM

From industrial to automotive to aerospace applications, power electronics are demanding higher capacitance in smaller packages. Therefore, to meet both capacitance demands and size requirements, electronic designers simply cannot continue to add more capacitors. While capacitor stacking is an option, many stacked assemblies are still quite large and stacking often introduces new failure modes, such as piezo electric cracking (Figure 1). 

Read More

Topics: Capacitor

Why Bidirectional Charging for EVs Requires Special Attention to Design

Posted by Jordan Yates on May 10, 2023 8:45:00 AM

As interest and adoption increase in the electric vehicle (EV) arena, associated technologies are advancing quickly. Batteries are becoming more powerful and charging infrastructure is increasingly robust and efficient. With all these advancements, EV batteries are good for more than powering cars on the road.

Read More

Topics: Capacitor

The Advantages of Knowles Precision Devices’ Broadband Capacitors

Posted by Cheriyan Perumal on May 3, 2023 8:15:00 AM

High-speed broadband and fiber optic devices used across a variety of communication and military and aerospace applications require circuits that couple RF signals. Since this involves removing the DC component and allowing only the high-frequency AC component to pass or bypass, this can be a complicated process. The blocking capacitor needs to present a near reflectionless transition at the frequency the line is seeing and at a bandwidth that allows the entire signal to pass without degradation. 

Read More

Topics: Capacitor

Selecting Capacitors for High-Voltage X-Ray Power Supplies

Posted by Jordan Yates on Apr 12, 2023 9:15:00 AM

As the backbone of the X-ray machine, X-ray tubes produce the radiation that generates the electromagnetic waves known as the “X-ray.” This is done by using a high voltage to accelerate the electrons released by a hot cathode to a high velocity. Those electrons then collide with the anode, which is a metal target usually made of tungsten. This process requires an input voltage typically ranging from 180 to 480 VAC with a power supply that transforms and steps up the voltage to extremely high voltage outputs ranging from 10kV and 120kV DC. A high-level diagram of the power supply required to power the X-ray tubes is shown in Figure 1. 

Read More

Topics: Capacitor, Medical, Filtering

High-Performance Capacitors to Meet the Needs of Demanding Aerospace and Defense Applications

Posted by Jordan Yates on Mar 22, 2023 8:45:00 AM

From military aircraft to electronic warfare defense systems, aerospace and defense applications are placing new demands on their power electronics. Defense electronics systems must function reliably for their lifetime while operating at higher voltages and wider temperature ranges, and all while becoming smaller, lighter, and consuming less power.

Read More

Topics: Capacitor, Military and Aerospace, High Reliability

What are Flying Capacitors?

Posted by Jordan Yates on Mar 15, 2023 8:15:00 AM

As demand for high-efficiency and high-power-density inverters continues to grow, the so-called “flying” capacitor multilevel inverter is emerging as a strong choice for many power electronics systems. Since these capacitors can “float” to different electric potentials depending on the connected semiconductor switching structure and state, they help balance out voltage level differences due to manufacturing tolerances, temperature variations, and other factors. These capacitors are also helpful in balancing voltage across the structure by temporarily storing and releasing energy as needed, increasing power density and quality, and optimizing the use of existing voltage availability.

Read More

Topics: Capacitor

The DC Bias Phenomenon Explained

Posted by Victor Lu on Feb 22, 2023 2:45:00 PM

When constructing multilayer ceramic capacitors (MLCCs), there are two classes of dielectrics electrical engineers typically select from depending on the application – Class 1, which consists of non-ferroelectric materials such as C0G/NP0, and Class 2, which are ferroelectric materials such as X5R and X7R. One key difference between these materials comes in the form of capacitance stability as voltage and temperature increase. With Class 1 dielectrics, capacitance will remain stable when DC voltage is applied and operational temperature increases. On the other hand, Class 2 dielectrics, which have a higher dielectric constant (K), are less stable with regards to temperature, voltage, frequency, and time.

Read More

Topics: Capacitor

EIA MLCC Case Sizes: Past and Future

Posted by Victor Lu on Dec 21, 2022 8:00:00 AM

Standards are a form of technical infrastructure, and their influence is felt throughout the electronics industry. For example, formed in 1924, the Electronic Industries Alliance (EIA) was an American standards organization that established an alliance of trade associations in the United States electronics manufacturing industry. Their collaboration ensured that electronic equipment produced by different manufacturers was compatible and interchangeable. The EIA formally dissolved in February 2011, dividing by sector.

Read More

Topics: Capacitor

Understanding Buck and Boost Converters and the Capacitors Behind Them

Posted by Jordan Yates on Dec 7, 2022 8:45:00 AM

Product designers working on critical applications requiring electrical power must carefully select components that not only supply the appropriate amount of voltage at the right time, but also help mitigate issues such as voltage ripple, ensure system longevity, and improve component reliability. 

Read More

Topics: Capacitor

High Q Capacitors for RF Power

Posted by Peter Matthews on Nov 22, 2022 8:15:00 AM

The generation of RF energy is critical for a wide range of technologies including magnetic resonance imaging (MRI), semiconductor manufacturing, industrial lasers, and wireless charging systems that require high-frequency current and minimal instances of power loss. For example, with an industrial laser, the RF plasma excitation, which is when electrons are broken off an atomic bond and plasma forms, requires RF sources ranging from 1kHz to 40.68MHz depending on the energy required, and a CO2 laser RF power supply that contains a standard source at 13.56MHz, 81MHz, or 125MHz.

Read More

Topics: Capacitor, RF and Microwave

Insights Into Precision Passive Devices

Knowles Precision Devices is a premier global source for Capacitors, RF Filters, EMI Filters, Resonators, non-magnetic components and advanced dielectric materials. An umbrella for the brands of Compex, DLI, Johanson MFG, Novacap, Syfer and Voltronics, Knowles Precision Devices serves a variety of markets including military, aerospace/avionics, medical equipment, implantable devices, EMI and connector filtering, oil exploration, instrumentation, industrial electronics, automotive, telecoms and data networks.

This Blog will provide insights into:

  • Filters for 5G and mmWave
  • Capacitors for High Voltage
  • Capacitors for High Reliability

and much more. Subscribe below to stay informed.

Subscribe Here!

Recent Posts