High-Performance Capacitors to Meet the Needs of Demanding Aerospace and Defense Applications

Posted by Jordan Yates on Mar 22, 2023 8:45:00 AM

From military aircraft to electronic warfare defense systems, aerospace and defense applications are placing new demands on their power electronics. Defense electronics systems must function reliably for their lifetime while operating at higher voltages and wider temperature ranges, and all while becoming smaller, lighter, and consuming less power.

Read More

Topics: Capacitor, Military and Aerospace, High Reliability

What are Flying Capacitors?

Posted by Jordan Yates on Mar 15, 2023 8:15:00 AM

As demand for high-efficiency and high-power-density inverters continues to grow, the so-called “flying” capacitor multilevel inverter is emerging as a strong choice for many power electronics systems. Since these capacitors can “float” to different electric potentials depending on the connected semiconductor switching structure and state, they help balance out voltage level differences due to manufacturing tolerances, temperature variations, and other factors. These capacitors are also helpful in balancing voltage across the structure by temporarily storing and releasing energy as needed, increasing power density and quality, and optimizing the use of existing voltage availability.

Read More

Topics: Capacitor

High Reliability for High Stakes: Electronics Components Powering Hypersonic Missiles

Posted by Peter Matthews on Mar 8, 2023 8:05:00 AM

As countries around the world continue to work on more sophisticated ways to conduct military missions – including weaponry that can reach intended targets quicker with even greater accuracy while remaining virtually undetectable – aerospace and defense companies are pushing the missile speed boundaries. Military aircraft and weaponry today are capable of traveling at supersonic speeds and are even entering hypersonic speed territory. 

Read More

Topics: Military and Aerospace, High Reliability

Filter Shape Factor and Selectivity

Posted by Peter Matthews on Mar 1, 2023 7:00:00 AM

The Ideal Filter would have unit gain (0dB) in its pass band and a gain of zero (-infinity dB) in its stop band. Between pass band and stop band there would be no indecision and would transition from 0dB to -infinity dB asymptotically. It would pass only the required frequencies without adding or subtracting anything from the signal and like a very discrete and fastidious butler we would not see it - just its perfect management of the frequencies in its care.

Read More

Topics: RF and Microwave

The DC Bias Phenomenon Explained

Posted by Victor Lu on Feb 22, 2023 2:45:00 PM

When constructing multilayer ceramic capacitors (MLCCs), there are two classes of dielectrics electrical engineers typically select from depending on the application – Class 1, which consists of non-ferroelectric materials such as C0G/NP0, and Class 2, which are ferroelectric materials such as X5R and X7R. One key difference between these materials comes in the form of capacitance stability as voltage and temperature increase. With Class 1 dielectrics, capacitance will remain stable when DC voltage is applied and operational temperature increases. On the other hand, Class 2 dielectrics, which have a higher dielectric constant (K), are less stable with regards to temperature, voltage, frequency, and time.

Read More

Topics: Capacitor

Capacitor Fundamentals: Part 3 – Factors Affecting Capacitance

Posted by Simon Mao on Feb 20, 2023 9:15:00 AM

Welcome to the Capacitor Fundamentals Series, where we teach you about the ins and outs of chips capacitors – their properties, product classifications, test standards, and use cases – in order to help you make informed decisions about the right capacitors for your specific applications. After describing common applications for capacitors in our previous article, let’s consider the factors and limitations that affect capacitance.

Read More

Topics: Capacitor

Webinar: 5 Ways Our Filters Are Extending the Way for Peak Performance

Posted by Peter Matthews on Feb 15, 2023 11:07:42 AM

In this webinar we review and challenge how some aspects of microwave technology have advanced beyond traditional assumptions. Looking at several examples across different filter technologies and applications, we share some exceptions to the rules and how to spot an opportunity to challenge conventional thinking.

Read More

Topics: Filtering

Capacitor Fundamentals: Part 2 – How are Capacitors Used?

Posted by Simon Mao on Feb 13, 2023 8:00:00 AM

Welcome to the Capacitor Fundamentals Series, where we teach you about the ins and outs of chips capacitors – their properties, product classifications, test standards, and common use cases – in order to help you make informed decisions about the right capacitors for your specific applications. After discussing capacitance and how capacitors work in our previous article, let’s talk about how capacitors are most frequently used in electronic circuits.

Read More

Topics: Capacitor

Understanding and Mitigating Multipaction

Posted by Peter Matthews on Feb 8, 2023 8:45:00 AM

When developing mission-critical space applications such as low Earth orbit (LEO) satellites or equipment designed for Mars missions, there are special considerations you must make if you will be operating your RF circuits in a vacuum. This is because when pressure in the vacuum is below 10-2 Torr, a potentially catastrophic phenomenon in RF circuits called multipaction is possible.

Read More

Topics: RF and Microwave

Capacitor Fundamentals: Part 1 – What is a Capacitor?

Posted by Simon Mao on Feb 6, 2023 8:15:00 AM

Welcome to the Capacitor Fundamentals Series, where we teach you about the ins and outs of chips capacitors – their nature and properties, dielectric behavior, product classifications, test and quality standards, and common use cases – in order to help you make informed decisions about the right capacitors for your specific applications. Part 1 discusses the key principles of capacitance and how a basic capacitor works.

Read More

Topics: Capacitor

Insights Into Precision Passive Devices

Knowles Precision Devices is a premier global source for Capacitors, RF Filters, EMI Filters, Resonators, non-magnetic components and advanced dielectric materials. An umbrella for the brands of Compex, DLI, Johanson MFG, Novacap, Syfer and Voltronics, Knowles Precision Devices serves a variety of markets including military, aerospace/avionics, medical equipment, implantable devices, EMI and connector filtering, oil exploration, instrumentation, industrial electronics, automotive, telecoms and data networks.

This Blog will provide insights into:

  • Filters for 5G and mmWave
  • Capacitors for High Voltage
  • Capacitors for High Reliability

and much more. Subscribe below to stay informed.

Subscribe Here!

Recent Posts