As radio architectures evolve, the need for filters is also evolving. At the same time, the industry is working to miniaturizes mmWave devices while continually minimizing costs. This means RF designers need filter solutions that offer a smaller footprint while keeping prices manageable.
Peter Matthews

Recent Posts
5 Ways to Address Common RF Filtering Challenges in mmWave Applications
Topics: 5G, RF and Microwave
Planning is in the works for Fifth Generation (5G) communication systems that will enable a hundred-fold increase in user data-rates – and with this increase comes a need for significant increases in bandwidth over what is currently available. Why does bandwidth follow when we ask for an increase in data rates?
Topics: 5G, RF and Microwave
Using Cavity Filters for High Precision and Reliability in Narrow Band Microwave Applications
Many microwave applications, such as repeaters, and electronic warfare equipment, require increased spectral resolution. This means these devices only need to look at a narrow slice of a given band. Filters that are optimized for the whole band, such us our planar microstrip devices, are too broadband for these applications. Likewise, traditional high Q filters, such as waveguide devices, are often too large to consider using in these types of applications.
Topics: RF and Microwave, High Reliability
High-Reliability Microwave Component Technology Enables Space Innovation
With more than 2,000 satellites currently orbiting the Earth, and that number expected to quintuple in the next 10 years, the demand for space-ready components is exponentially increasing (Figure 1). At the same time, the technology needed to control and transmit satellite data has changed from mechanically controlled parabolic or dish technology to active electronically steered arrays (AESAs).
Topics: RF and Microwave, Military and Aerospace, High Reliability
FAQ: What Frequencies Do Your Microwave Products Cover?
At Knowles Precision Devices, we support a wide variety of industries and applications with unique needs; the product catalog is constantly evolving to accommodate. We are often asked which frequencies we support. While our microwave products excel at higher frequencies, the catalog spans a wide range.
Topics: 5G, RF and Microwave
Clarifying MIL-STD-461 and EMI Filter Misconceptions
The US MIL-STD-461 specification manages electromagnetic interference emissions by setting limits on the levels that can be emitted from electrical equipment. This specification also sets regulation to control equipment susceptibility to external noise sources and establishes guidelines for properly measuring the relevant equipment features.
Topics: RF and Microwave, Military and Aerospace
Application and Installation Considerations for EMI Filters
EMI filtering plays an important role in reducing noise that could interfere with other devices; in medical or defense applications, for example, false alarms due to external interference could be detrimental. Here, we will continue our EMI filtering exploration with application and installation considerations. For earlier reading, review EMI filtering basics and filter performance.
Topics: Capacitor, RF and Microwave
To comply with international legislation such as the EU Directive on EMC or the FCC, EMI filtering is an essential element of equipment design. Here, we will continue to explore EMI filtering through insertion loss and filtering performance.
The insertion loss performance shows signal attenuation at any given frequency. As a metric, the insertion loss performance is most useful as a guide in the filter selection process; the actual performance in service can vary depending on circuit characteristics.
Topics: Capacitor, RF and Microwave
In the race to implement mainstream 5G wireless communication, the world is waiting to see if this next-generation network will achieve a hundredfold increase in user data rates. This transformative technology not only boosts performance for the latest cell phones, but also for fixed wireless access (FWA) networks and Internet of Things (IoT) smart devices. In order to reach 10 Gbps peak data rates, the increase in channel capacity must come from somewhere. A key innovation at the heart of 5G is utilizing new frequencies greater than 20 GHz in the millimeter wave (mmWave) spectrum, which offers the most dramatic increase in available bandwidth.
Topics: 5G, RF and Microwave
With the ever-increasing use of electronic equipment comes a greater likelihood of interference from all the other equipment out there. In the same vein, we’re seeing more circuits, with lower power levels, that are easily disturbed; so, there’s a need to protect equipment from EMI (electromagnetic interference). In automotive or medical applications, for example, there can be no false alarms due to external interference. The level of uncertainty has pushed EMI compliance testing to the component level.
To meet international legislation such as the EU Directive on EMC or the FCC, EMI filtering is an essential element of equipment design. Introducing screening measures to case or cables, for example, may suffice in many instances, but you might need to introduce low-pass filtering for additional protection as well. Here, we will begin to explore EMI filtering and the terminology used in designing effective protection.
Topics: RF and Microwave