Q factor, or quality factor, is an electrical term used to describe the ratio of energy stored to energy dissipated in a capacitor at a certain frequency (you can learn more about the different components of Q factor and ways to define it here). In other words, Q factor tells us how good a capacitor is at its job at a certain frequency. A high Q value indicates low energy loss during operation, making these capacitors a good fit for applications requiring low power dissipation and high stability.
Topics: Capacitor
As you likely know, capacitors are used in electronic circuits to provide local energy storage and stabilize power supply voltage. Decoupling capacitors are a specific type of capacitor used to isolate or decouple two circuits. In other words, these capacitors decouple AC signals from DC signals or vice versa. Decoupling capacitors act as a buffer, supplying clean and stable power to components, which minimizes the risks of malfunctions, noise coupling, or signal integrity issues.
Topics: Capacitor
Radio frequency (RF) and microwave applications involve transmitting and receiving electromagnetic signals at high frequencies. While these terms are often used interchangeably, RF means AC signals at 3 kHz to 300 GHz. For microwave, it’s more like 300 MHz to 300 GHz. Capacitors play a central role in these applications because they are concerned with capacitance, naturally, and impedance (i.e., resistance), which vary with frequency. Functionally, these passive electronic components store energy in an electric field.
Topics: Capacitor
Looking Closer at Resonant Capacitors in Electric Vehicles
One of the primary goals in electric vehicles (EVs) is to increase the efficiency of its power conversion devices. The more efficiently power is converted, the further distance the EV can travel on one charge. For example, by reducing losses in a DC-to-DC (or DC/DC) converter, the converter (and overall vehicle) benefits from improved energy efficiency, a more streamlined design, and diminished heating from components.
Topics: Capacitor, Automotive, Electric Vehicles
Understanding the Role of Ceramic Capacitors in Implantable Deep Brain Stimulators
A deep brain stimulator (DBS), also known as a neuro-stimulator, is a medical device that uses electrical stimulation to treat neurological disorders such as Parkinson's disease, essential tremor, dystonia, and obsessive-compulsive disorder (OCD). The DBS is typically implanted under the skin near the collarbone or in the abdomen, and connected to a thin wire, or lead, that runs under the skin to the targeted area of the brain as shown in Figure 1.
What Are DC-Blocking Capacitors, and Why Are They Important?
Electronic devices power our world and allow us to communicate. In all applications requiring signal integrity and accurate power amplification, blocking capacitors are used to provide clean waveforms and correctly amplified voltages.
Topics: Capacitor
Electronic devices provide the tools we need to power the world. From cell phones to modern vehicles to scientific equipment to the appliances in our homes, we rely on electronics to improve and even lengthen our lives. All electronics depend on clean power, and the bypass capacitor is crucial in ensuring devices safely meet their power specifications.
Topics: Capacitor
How The Shift to SiC-Based Semiconductors in Military Power Supplies Affects Capacitor Selection
To protect people and critical equipment, military-grade electronic devices must be designed to function reliably while operating in incredibly harsh environments. Therefore, instead of continuing to use traditional silicon semiconductors, in recent years, electronic device designers have started to use wide band-gap (WBG) materials such as silicon carbide (SiC) to develop the semiconductors required for military device power supplies. In general, WBG materials can operate at much higher voltages, have better thermal characteristics, and can perform switching at much higher frequencies. Therefore, SiC-based semiconductors provide superior performance compared to silicon, including higher power efficiency, higher switching frequency, and higher temperature resistance as shown in Figure 1.
Topics: Capacitor, Military and Aerospace, High Reliability
The Capabilities, Benefits, and Key Applications for StackiCap™ MLCCs
From industrial to automotive to aerospace applications, power electronics are demanding higher capacitance in smaller packages. Therefore, to meet both capacitance demands and size requirements, electronic designers simply cannot continue to add more capacitors. While capacitor stacking is an option, many stacked assemblies are still quite large and stacking often introduces new failure modes, such as piezo electric cracking (Figure 1).
Topics: Capacitor
Why Bidirectional Charging for EVs Requires Special Attention to Design
As interest and adoption increase in the electric vehicle (EV) arena, associated technologies are advancing quickly. Batteries are becoming more powerful and charging infrastructure is increasingly robust and efficient. With all these advancements, EV batteries are good for more than powering cars on the road.
Topics: Capacitor, Electric Vehicles