Filter Basics Part 4: Key Filter Types and Technologies

Posted by Peter Matthews on Apr 27, 2022 9:00:00 AM

To help customers with filter selection, we generally provide a lot of information on what our filters can do. But in this new Filter Basics Series, we are taking a step back to cover some background information on how filters do what they do. Regardless of the technology behind the filter, there are several key concepts that all filters share that we will dive into throughout this series. By providing this detailed fundamental filter information, we hope to help you simplify your future filtering decisions.

In part 4 of this series, we provide overviews of the main filter types and key filter technologies available today.

Read More

Topics: RF and Microwave, Filtering

PCB Design Considerations for High-Performance Filtering in mmWave Applications

Posted by Peter Matthews on Apr 20, 2022 9:00:00 AM

RF circuits for applications in the mmWave range (30 to 300 GHz) require high-performance filtering to meet the high-data, high-speed functionality that operating at these higher frequencies promises. However, filters for devices operating in the mmWave range will not function optimally if your printed circuit board (PCB) is not configured appropriately. For this reason, RF design engineers need to make a number of critical PCB design decisions that range from selecting the right materials to developing a board configuration that will limit common issues such as spurious-wave-mode propagation, conductor and radiation losses, unwanted resonance, and dispersion.

Read More

Topics: 5G, RF and Microwave, Filtering

Filter Basics Part 1: Resistance, Capacitance, Inductance, and Impedance

Posted by Peter Matthews on Feb 16, 2022 9:00:00 AM

To help customers with filter selection, we generally provide a lot of information on what our filters can do. But in this new Filter Basics Series, we are taking a step back to cover some background information on how filters do what they do. Regardless of the technology behind the filter, there are several key concepts that all filters share that we will dive into throughout this series. By providing this detailed fundamental filter information, we hope to help you simplify your future filtering decisions. 

To kick-off this series, our first post breaks down the basic properties impacting capacitor and inductor performance including resistance, capacitance, inductance, and impedance.

Read More

Topics: Capacitor, Filtering

Striking a Balance for Spectrum Needs: 5G Communications vs. Aircraft Altimeter Operations

Posted by Peter Matthews on Jan 26, 2022 9:00:00 AM

At this point, you’ve likely seen a slew of mainstream news articles about 5G causing safety concerns around air travel. In fact, ahead of the rollout of new 5G services from major US telecom companies including Verizon and AT&T on Jan. 19, 2022, many international airlines canceled or delayed flights to major US airports where they believed 5G signals could possibly interfere with the radar signals required to properly operate landing equipment on their planes.

Read More

Topics: RF and Microwave, Military and Aerospace, Filtering

Making a Reduced Form Factor, High-Performance Switch Filter Bank a Reality

Posted by Jared Burdick on Aug 18, 2021 9:00:00 AM

Many critical military operations around the world are increasingly relying on a variety of electronic warfare devices for a range of threat suppression, detection, and neutralization activities. This means that numerous devices operating across the RF spectrum including low-frequency devices in the VHF band and mmWave devices in the Ka band are necessary. As shown in Figure 1, when many electronic warfare devices are in use, a large number of signals are being sent and received and crossing paths. Therefore, it’s easy for any one of these devices to experience issues with interference if proper filtering techniques are not in place.

Read More

Topics: RF and Microwave, Military and Aerospace, Filtering

Fully Digital Beamforming – An Excellent Option for Emerging Military Applications

Posted by Peter Matthews on Jul 14, 2021 9:00:00 AM

As early adopters of beamforming technology in the 1960s, aerospace and defense organizations have a lot of experience using the initial large-scale active electronically scanned arrays (AESAs) for military radar tracking applications. But these arrays aren’t as convenient for some applications today as the operational frequencies of the targets of interest for many military applications are increasing. This means the wavelengths of the signals that need to be monitored are getting shorter and these radar applications need denser arrays since antenna spacing needs to be set at one half the wavelength. For example, at 25GHz, the wavelength in free space is approximately 12mm (0.47”), leading to half-wave spacing for antennas of 6mm (0.24”). Also, as arrays become denser, the new challenge for RF system designers is avoiding interference in these tighter spaces, especially when transmitting signals.

Read More

Topics: Military and Aerospace, Filtering

Webinar: Addressing Filtering Challenges in Digital Broadband Receivers for Electronic Warfare Applications

Posted by Tim Brauner on Jun 30, 2021 9:00:00 AM

Today, electronic warfare applications need to detect a wide variety of signals ranging from UHF communications to GPS and other data signals in the L band to high-frequency radar signals that can fall in the X, S, or K bands. Therefore, these receivers need to operate across an extremely wide range of bandwidths to pick up and understand signals anywhere from 300MHz to 20GHz and beyond. However, a basic general wideband antenna isn’t sufficient for these applications because selectivity is needed to determine what you are actually listening to. Additionally, as if the task of designing an ultra-wideband receiver with selectivity wasn’t challenging enough, RF designers are simultaneously facing pressure to reduce the size, weight, and power (SWaP) of these applications as well.

Read More

Topics: RF and Microwave, Military and Aerospace, Filtering

An Innovative Phased Array Filtering Approach

Posted by Greg Alton on Apr 21, 2021 9:00:00 AM

As the RF spectrum becomes more crowded and the number of bandwidth battles grows each year, RF designers are looking for innovative designs that minimize interference while also increasing signal transmission power. Since phased arrays can efficiently maximize gain and signal directivity and minimize interference for both Tx and Rx, adoption of this architecture by RF designers is growing. This means RF designers are also on a quest for phased array filtering options that can help meet the size, weight, and power (SWaP) needs and performance demands required by today’s RF applications. As a result, our engineers have spent a significant amount of time working on an innovative approach that can meet this seemingly impossible combination of requirements.

Read More

Topics: 5G, RF and Microwave, Military and Aerospace, Filtering

Insights Into Precision Passive Devices

Knowles Precision Devices is a premier global source for Capacitors, RF Filters, EMI Filters, Resonators, non-magnetic components and advanced dielectric materials. An umbrella for the brands of Compex, DLI, Johanson MFG, Novacap, Syfer and Voltronics, Knowles Precision Devices serves a variety of markets including military, aerospace/avionics, medical equipment, implantable devices, EMI and connector filtering, oil exploration, instrumentation, industrial electronics, automotive, telecoms and data networks.

This Blog will provide insights into:

  • Filters for 5G and mmWave
  • Capacitors for High Voltage
  • Capacitors for High Reliability

and much more. Subscribe below to stay informed.

Subscribe Here!

Recent Posts