As the demand for faster communications across consumer and commercial devices continues to increase, operating frequencies of RF devices are being pushed higher and higher. This creates a number of challenges for RF device designers, as filter size must be reduced to compensate for smaller device sizes and shorter wavelengths while also maintaining high levels of performance. While surface mount technology (SMT), and in particular microstrip implementations, are an excellent option to meet these demands, it is important to note that not every SMT microstrip filter is created equal. There are a variety of choices to discuss with your filter supplier, such as substrate type, plating technology, and topology that can dramatically reduce the size and increase the performance of an SMT microstrip filter. One particular choice that Knowles Precision Devices has guided customers through for decades is the decision to use thin film for these filters.
Peter Matthews

Recent Posts
Achieve the Best Performance for Your Thin Film RF Devices
Topics: RF and Microwave, Filtering, Build to Print
High Reliability for High Stakes: Electronics Components Powering Hypersonic Missiles
As countries around the world continue to work on more sophisticated ways to conduct military missions – including weaponry that can reach intended targets quicker with even greater accuracy while remaining virtually undetectable – aerospace and defense companies are pushing the missile speed boundaries. Military aircraft and weaponry today are capable of traveling at supersonic speeds and are even entering hypersonic speed territory.
Topics: Military and Aerospace, High Reliability
The Ideal Filter would have unit gain (0dB) in its pass band and a gain of zero (-infinity dB) in its stop band. Between pass band and stop band there would be no indecision and would transition from 0dB to -infinity dB asymptotically. It would pass only the required frequencies without adding or subtracting anything from the signal and like a very discrete and fastidious butler we would not see it - just its perfect management of the frequencies in its care.
Topics: RF and Microwave
Webinar: 5 Ways Our Filters Are Extending the Way for Peak Performance
In this webinar we review and challenge how some aspects of microwave technology have advanced beyond traditional assumptions. Looking at several examples across different filter technologies and applications, we share some exceptions to the rules and how to spot an opportunity to challenge conventional thinking.
Topics: Filtering
When developing mission-critical space applications such as low Earth orbit (LEO) satellites or equipment designed for Mars missions, there are special considerations you must make if you will be operating your RF circuits in a vacuum. This is because when pressure in the vacuum is below 10-2 Torr, a potentially catastrophic phenomenon in RF circuits called multipaction is possible.
Topics: RF and Microwave
Since our acquisition of Integrated Microwave Corporation (IMC) in 2020, we have extended our range of RF and microwave filtering solutions to include a wide variety of ceramic coaxial resonators, lumped element filters, and cavity filters from the VHF to the Ka band. During this time, we’ve also continued to innovate on and expand our product offering for one of our most popular filter types – the microstrip filter.
Topics: RF and Microwave, Filtering
Back to Basics: Breaking Down the Fundamentals of Filters
To help our customers with filter selection, we generally provide a lot of detailed information on what our various filters can do. However, we thought it also might be really helpful for our customers if we took a step back and covered some background information on how filters do what they do. Regardless of the technology behind the filter, there are several key concepts that all filters share. Therefore, we decided it was time to bring together our top engineers so that we could compile their extensive filtering knowledge into a comprehensive Filter Basics ebook.
Topics: RF and Microwave, Filtering
Cavity Filters: High Performance Under High Power
As discussed in previous blog posts, resonators are the building blocks used to create filters. Recently, we published a blog post that discussed two different types of resonators – coaxial ceramic and dielectric. In this post, we will cover the details of a third type of resonator – the cavity resonator.
Topics: RF and Microwave, Filtering
The generation of RF energy is critical for a wide range of technologies including magnetic resonance imaging (MRI), semiconductor manufacturing, industrial lasers, and wireless charging systems that require high-frequency current and minimal instances of power loss. For example, with an industrial laser, the RF plasma excitation, which is when electrons are broken off an atomic bond and plasma forms, requires RF sources ranging from 1kHz to 40.68MHz depending on the energy required, and a CO2 laser RF power supply that contains a standard source at 13.56MHz, 81MHz, or 125MHz.
Topics: Capacitor, RF and Microwave
After decades of viewing MIL-SPECs as the gold standard for qualifying and screening parts for viability in space, NASA has recently changed course, and is adopting commercial-off-the-shelf (COTS) parts as an option for a variety of space applications. Burgeoning changes in industry trends, a drive to remain competitive, and the desire to guide budget-constrained missions pushed the organization to commission a NASA Engineering and Safety Center (NESC) study to evaluate the reliability of COTS parts. Upon completion of the study, NASA aims to create a consistent set of requirements at the agency level to minimize risk and impact of part selection/usage on the performance of NASA spaceflight technology.
Topics: Military and Aerospace