Webinar: Design and Testing Strategies for High Reliability MLCCs

Posted by Victor Lu on Feb 1, 2023 8:45:00 AM

High reliability – this is what the industry demands for some of the world’s most important devices. From implantable devices going into the human body, to space and military devices, these applications are built to last under extreme conditions. To do so, they are made of high-quality components with appropriate additional testing to ensure long-term reliability.

Read More

Topics: High Reliability

Selecting MLCCs that Meet the High-Reliability Requirements of Medical Implantable Devices

Posted by Victor Lu on Oct 26, 2022 8:45:00 AM

Designing medical implantable devices for high reliability is crucial for a variety of reasons. First, given the life-critical functions performed by many medial implantable devices, and the invasive procedure required to implant medical equipment properly in the human body, it is imperative that all medical devices are designed to function reliably throughout their entire lifetime. Furthermore, since patient safety is paramount, any precautions to reduce the possibility of potentially life-threatening malfunctions, recalls, and replacement surgeries are necessary. And, beyond preventing patient safety issues, there may also be severe economic and legal implications for device manufacturers if an implantable device fails.

Read More

Topics: Capacitor, Medical, High Reliability

Meeting the Unique Design Requirements for Leadless Pacemaker Electrical Components

Posted by Jordan Yates on Aug 31, 2022 8:45:00 AM

Today, millions of people around the world rely on pacemakers to help regulate their heart’s rhythm. A traditional pacemaker usually consists of a pulse generator that is about the size of a tea bag and implanted under the skin near the collarbone, and a wire, or lead, that runs through a blood vessel to the heart. The end of the lead has an electrode on it that touches the heart wall to deliver electrical impulses. However, in the last decade, innovations in pacemaker technology have led to the introduction of a new style of pacemaker, known as the leadless pacemaker, that is about 1/10th the size of a traditional pacemaker, or about the size of a vitamin (Figure 1).

Read More

Topics: Capacitor, Medical, High Reliability

Understanding the Nuances of Space-Level Filter Qualification and Screening

Posted by Peter Matthews on Aug 10, 2022 8:45:00 AM

When launching expensive mission-critical equipment and people into space, there is absolutely no room for failure of any component. Therefore, if you are an RF system designer working on an aerospace application, you must be sure you are selecting high-quality, high-reliability electronic components for all your designs. But do you have a process in place for this type of component selection? At Knowles Precision Devices, we know it can be a challenging to navigate component selection for aerospace applications as there are many combinations of standards and tests that can be performed to space-qualify parts.

Read More

Topics: Military and Aerospace, High Reliability, Filtering

Capacitors in Space: Specifications for High-Reliability

Posted by Victor Lu on Mar 23, 2022 9:00:00 AM

Space missions present a unique set of environmental challenges that demand high reliability down to the smallest electronic components. Mission failures could cost human lives. From in-flight systems to power supplies, every single system contributes to the success of a space project, so they must maintain high quality and safety standards for long durations.

Read More

Topics: Capacitor, Military and Aerospace, High Reliability

Surface-Mount vs. Through-Hole Technology (Yes, We Still Need THT)

Posted by Victor Lu on Feb 23, 2022 9:00:00 AM

There are two main mounting schemes for placing components on a printed circuit board (PCB): through-hole technology (THT) and surface-mount technology (SMT). Given its popularity over the last few decades, it’s no surprise that designers default to SMT, but there are advantages to both schemes that are worth exploring, especially for high-reliability application designs.

Read More

Topics: High Reliability

Further Increase MLCC Reliability with CSAM Testing

Posted by Victor Lu on Feb 2, 2022 9:00:00 AM

When an electrical device fails, oftentimes, the root cause can be traced to a field failure of a capacitor. While it is rare for the failure to be caused by a capacitor defect that was introduced during manufacturing, it can happen. This is especially true when multi-layer ceramic capacitors (MLCCs) are used versus other more simplistic capacitor types such as single-layer capacitors (SLCs) since the manufacturing process involves stacking many layers of dielectric and electrodes on top one another.

Read More

Topics: Capacitor, High Reliability

New Low Loss, Ultra Stable High-Capacitance MLCCs for Power Electronics

Posted by Steve Hopwood on Dec 1, 2021 9:00:00 AM

Many power electronics today are being designed for use in high-temperature, high-voltage environments, such as inside electric vehicles (EVs). However, size, weight, and power (SWaP) are also key factors driving electronic product development. These conflicting design criteria are an issue for many electrical engineers because space is not available to simply add a cooling system, as this will add weight and increase the product’s overall footprint. Therefore, many of these electronic components are susceptible to “running hot” at the high temperatures and high voltages used in these tiny spaces.

Read More

Topics: Capacitor, Electric Vehicles, High Reliability

Addressing Electronic Circuit Development Challenges for Medical Devices

Posted by Shiraz Vakharia on Nov 17, 2021 9:00:00 AM

From systems that diagnose, like a magnetic resonance imaging (MRI) machine, to implantable devices that treat patients, like pacemakers and implantable cardioverter-defibrillator (ICDs), highly reliable electronic components are necessary. While the functionality of these devices is quite different, the challenges associated with designing these devices, such as selecting failsafe electronic components designed for lifetime reliability and ensuring supplier partners can meet industry-specific standards, are shared. Let’s look more closely at some of the industry-wide challenges associated with electronic component selection for medical devices as well as some of the application-specific decisions medical device designers need to make to ensure these devices function consistently and reliably for the long term.

Read More

Topics: Medical, High Reliability

A Custom Approach to Large Capacitor Assembly

Posted by Steve Hopwood on Oct 13, 2021 9:00:00 AM

Achieving high capacitance means going big. But how do you do that while still maximizing board space? At Knowles Precision Devices, we’ve developed a new method for building customizable large capacitor assemblies that capitalize on the vertical space above the circuit board. While stacked capacitor assemblies have been around for many years, these parts do not have very good bump and vibration withstand due to the thin leads used in their construction. These new assemblies from Knowles Precision Devices offer a ruggedized construction capable of withstanding high levels of shock and vibration. This offers a unique combination of capability, durability, high capacitance, and very high voltage in a smaller area, making these capacitors ideal for automotive, military, and aerospace applications.

Read More

Topics: Capacitor, Automotive, Military and Aerospace, Electric Vehicles, High Reliability

Insights Into Precision Passive Devices

Knowles Precision Devices is a premier global source for Capacitors, RF Filters, EMI Filters, Resonators, non-magnetic components and advanced dielectric materials. An umbrella for the brands of Compex, DLI, Johanson MFG, Novacap, Syfer and Voltronics, Knowles Precision Devices serves a variety of markets including military, aerospace/avionics, medical equipment, implantable devices, EMI and connector filtering, oil exploration, instrumentation, industrial electronics, automotive, telecoms and data networks.

This Blog will provide insights into:

  • Filters for 5G and mmWave
  • Capacitors for High Voltage
  • Capacitors for High Reliability

and much more. Subscribe below to stay informed.

Subscribe Here!

Recent Posts