At Knowles Precision Devices, we thrive on working with companies who want to take technically challenging ideas and work through the details to figure out how to turn their seemingly impossible ideas into reality. This is because we are not limited to volume production and have extensive experience making specialty and custom parts. We are also familiar with the challenges associated with delivering high-reliability components as we supply many industries and applications that depend on the consistent functionality of custom-shaped parts. For example, we provide numerous space grade components and we are the only manufacturer who has developed planar array ceramic parts for the International Space Station.
Solving Tough Technical Challenges Through Agility and Experience
Topics: Capacitor, Medical, High Reliability
Meet Safety Requirements at Higher Voltages with New Safety-Certified MLCCs
With our new expanded range of enhanced safety-certified multilayer ceramic capacitors (MLCCs), Knowles Precision Devices now offers a unique combination of capability and safety certification for electronic device applications. These new surface-mount MLCCs comply with international UL60384-14 and EN60384-14 specifications and can be used instead of leaded film capacitors in AC-DC power supplies where a lightning strike or other voltage transients represent a threat to the electronic equipment.
Topics: Capacitor, High Reliability
Build-to-Print Basics Part 4: The Knowles Precision Devices Build-to-Print Process
To provide a better understanding of build-to-print in general and the breadth of our offerings, as well as how our thin-film technology can benefit your applications, we’ve put together a Build-to-Print Basics series. Part 4 provides an overview of our process and the topics our applications engineers review with clients to kick-off any build-to-print project.
Topics: Capacitor, RF and Microwave, High Reliability
At Knowles Precision Devices, we purposely avoid commodity components. What we thrive on is doing the hard things. We handle the specialty components that go in systems that cannot fail and that operate at extremely high voltages, temperatures, or frequencies. Do you have a complex technical challenge with hard-to-meet performance, size, or other requirements? Bring it to us. It’s what we do.
Topics: RF and Microwave, Military and Aerospace, Medical, Telecom, Electric Vehicles, High Reliability
Meeting the Demands of High-Voltage Electric Vehicle Systems While Guaranteeing Reliability and Safety
As countries around the world tighten emissions standards, the demand for fully electric vehicles (EVs) is increasing. However, for EVs to see mainstream adoption, manufacturers must address the primary consumer concerns: longer driving ranges and faster charging. To address these concerns, EV manufacturers are beginning to redesign their vehicles to switch from the 400V battery systems widely used today to 800V battery systems, which can offer twice the voltage and 2.7 times the power density compared to a 400V system.
Topics: Capacitor, Automotive, Electric Vehicles, High Reliability
Using Cavity Filters for High Precision and Reliability in Narrow Band Microwave Applications
Many microwave applications, such as repeaters, and electronic warfare equipment, require increased spectral resolution. This means these devices only need to look at a narrow slice of a given band. Filters that are optimized for the whole band, such us our planar microstrip devices, are too broadband for these applications. Likewise, traditional high Q filters, such as waveguide devices, are often too large to consider using in these types of applications.
Topics: RF and Microwave, High Reliability
High-Reliability Microwave Component Technology Enables Space Innovation
With more than 2,000 satellites currently orbiting the Earth, and that number expected to quintuple in the next 10 years, the demand for space-ready components is exponentially increasing (Figure 1). At the same time, the technology needed to control and transmit satellite data has changed from mechanically controlled parabolic or dish technology to active electronically steered arrays (AESAs).
Topics: RF and Microwave, Military and Aerospace, High Reliability
How a $5 Capacitor Turned Into a $1 Billion Problem
In mission-critical applications, additional screening and testing is required to ensure that only the most robust parts make it to the finished product. Preventative measures, like high quality standards, lessen the possibility of failure in the field and minimize the likelihood of astronomical downstream costs.
Topics: Capacitor, News and Events, Military and Aerospace, High Reliability
Capacitor Fundamentals: Part 11 - High Reliability Testing
Welcome to the Capacitor Fundamentals Series, where we teach you about the ins and outs of chips capacitors – their properties, product classifications, test standards, and use cases – in order to help you make informed decisions about the right capacitors for your specific applications. After describing standard industry test testing in our previous article, let’s discuss high reliability testing for capacitors.
Topics: Capacitor, High Reliability